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Summary

An analytical, parametric study of the attenuation of bending boundary layers or edge effects in
balanced and unbalanced, symmetrically and unsymmetrically laminated thin cylindrical shells is pre-
sented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell
equations and specializations to the Love-Kirchhoff shell equations and Donnell’s equations are
included. Two nondimensional parameters are identified that characterize and quantify the effects of
laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very
general and encompassing manner.

A substantial number of structural design technology results are presented for a wide range of
laminated-composite cylinders. For all laminate constructions considered, the results show that the
differences between results that were obtained with the Sanders-Koiter shell equations, the Love-
Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect
of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the
size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders
considered. Moreover, the results show that coupling between the various types of shell anisotropies has
a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The
results also show that, in some cases, neglecting the shell anisotropy results in underestimating the
bending boundary-layer decay length and, in other cases, results in an overestimation. An example
problem is included in an appendix that demonstrates how to perform the calculations that were used to
generate the results of the present study.

Symbols
ayp, &y, g py Inverted stiffness expressions defined in appendix C

12, 890, 896, by1  modified inverted stiffness expressions defined in appendix B

A, A nondimensional anisotropy parameters

A1y, A2 A1 laminate membrane stiffnesses

A2z Age Asp

:5\16, Az@ :5\66 modified laminate stiffnesses defined in appendix B

B11, B12 B, laminate membrane-bending coupling stiffnesses

B22: B2g Bes

éle, §26 modified laminate stiffnesses defined in appendix B

A first-order correction factor for anisotropy parameter

d, attenuation or decay lengths for which anisotropy is included and neglected,
respectively

D11, D1p, D1 laminate bending stiffnesses

D22 D26 Des

€, €

stiffness coefficients defined in appendixes C and B, respectively
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Introduction

major and minor principal lamina moduli, respectively

lamina shear modulus

cylinder wall thickness and length, respectively

axial and circumferential bending and twisting stress resultants, respectively
axial, circumferential, and shear membrane stress resultants, respectively
nondimensional orthotropy parameter

loading function appearing in bending boundary-layer differential equation
constant coefficients of bending boundary-layer differential equation

axial and circumferential transverse-shear stress resultants, respectively
cylinder radius

modified shear stress resultant defined in appendix B

strain-energy density

radial-displacement component

axial coordinate of cylinder

attenuation-length tolerance parameter

axial, circumferential, and shear membrane strains, respectively
circumferential, angular coordinate

axial and circumferential bending and twisting strains, respectively
constant defining different shell theories

lamina major Poisson’s ratio

lamina fiber angle (see fig. 4)

The term, “bending boundary layer,” refers to localized zones of bending stresses and deformations
that appear in practically every type of thin-shell structure (reBdr)ding boundary layers are caused
by edge support conditions; by localized mechanical loads, heating, or cooling; and by abrupt changes
in stiffness, such as those caused by a cutout, a crack, or a stiffener. All these effects may be real con-
cerns in a given preliminary design for an advanced aerospace vehicle made of laminated-composite
materials. Thus, it is useful to have nondimensional parameters that characterize the effects of shell
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geometry and laminate orthotropy and anisotropy on the extent of bending boundary layers that can be
used to help guide the development of a design. For example, an optimal design for a pressure vessel
might be one that exploits the membrane load-carrying action of a shell and minimizes zones of local
bending stresses. Meaningful nondimensional parameters could be used at the preliminary design stage
to identify families of laminates and material systems that exhibit relatively small bending boundary
layers. Moreover, a meaningful estimate of the size of a bending boundary layer in a shell is very useful
for determining an adequate first-approximation finite-element model for a complex shell structure.
Without a proper understanding of the extent of a bending boundary layer, it is possible to have a finite-
element model that could miss a significant part of the structural response in a region where failures are
often initiated by high interlaminar stresses. Furthermore, a priori knowledge of the extent of bending
boundary layers is useful in determining the instrumentation locations in structural verification tests and
in material characterization tests (ref. IB)addition, knowledge of how laminate construction affects

the extent of a bending boundary layer is useful for understanding how nonlinear prebuckling deforma-
tions affect the buckling behavior of cylindrical shells.

Studies of the behavior of axisymmetric, bending boundary layers in right-circular, cylindrical shell
structures made of orthotropic or anisotropic materials and with finite length have been presented, to at
least some extent, in references 1 through 13. In the discussion that follows, reference is made to unbal-
anced and balanced laminates that are either symmetrically or unsymmetrically laminated. Herein, the
term unbalanced laminate is used to indicate that coupling between pure extension or contraction and
shearing is present in a laminate. The term unsymmetric laminate is used to indicate coupling between
any of the components of bending action with any of the components of membrane action. A fully
anisotropic laminate would include both these types of anisotropy, in addition to the anisotropy that is
manifested by coupling between pure bending and twisting action that is sometimes exhibited by
balanced, symmetric laminates.

In reference 1, an analysis is presented, and an expression for the attenuation or decay length of the
bending boundary layer for a specially orthotropic cylinder that is subjected to edge loads, internal
pressure, and heating is given. These equations, and the accompanying results, are based on the linear
Love-Kirchhoff shell equations. In reference 3, an analytical solution that is based on Donnell's simpli-
fications to the linear Love-Kirchhoff shell equations is given for fully anisotropic cylinders that are
subjected to lateral pressure and edge loads. Results that show the effect of laminate anisotropy on the
edge moment are presented for a clamped two-ply shell that is subjected to internal pressure. In
addition, a discussion is presented that suggests that solutions based on Donnell's equations should be
accurate for laminates that are not highly anisotropic. An analytical study of bending boundary layers in
unbalanced, symmetrically laminated cylinders, which is also based on Donnell's equations, is
presented in reference 2. The aim of this study was to determine a suitable gage section in a laminated-
composite tube that is to be used for a material characterization test. Results are presented for
unidirectional, helical-wound tubes.

An analytical solution for bending boundary layers in unbalanced, symmetrically laminated and
balanced, unsymmetrically laminated circular cylindrical shells that are subjected to internal pressure
and thermal loads is presented in reference 4. The solution is also based on Donnell’s linear equations,
and numerical results are presented for filament-wound cylinders made of heat-treated carbon-carbon
material. A study that focuses mainly on prebuckling deformations, with bending boundary layers, in
homogeneous, orthotropic and unsymmetrically laminated cross-ply cylinders that are subjected to
axial-compression loads and lateral pressure loads is presented in reference 5. The effects of the bend-
ing boundary layers on the buckling response are examined for several laminate constructions, but the
general effects of the laminate construction on the extent of the boundary layers are not discussed.
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A pair of complex conjugate, fourth-order equations that are based on Flugge's corresponding
equations (ref. 14), which can be solved in closed form, are derived for specially orthotropic, circular
cylindrical shells in reference 6. Moreover, eigenfunction solutions are presented that include the solu-
tion for the axisymmetric bending boundary layer; several simplified equations are presented and their
relative accuracy is analyzed. In reference 7, a study of bending boundary layers in transversely isotro-
pic circular cylindrical shells is presented. This study examines the attenuation characteristics of bend-
ing boundary layers by applying an asymptotic method to the linear, three-dimensional elasticity
equations and presents order-of-magnitude estimates for the stresses and displacements for a wide range
of ratios of the two principal elastic moduli. In reference 8, an analytical solution for an unbalanced,
unsymmetrically laminated circular cylindrical shell that is subjected to internal pressure is presented
that is based on a variant of the Love-Kirchhoff shell theory, which uses an expression for the change in
surface twist that was given by Timoshenko. Numerical results that demonstrate the coupling effects of
the shell anisotropies are also presented for a two-ply shell.

The bending boundary layers of an unbalanced, unsymmetrically laminated circular cylindrical
shell that is subjected to axial compression, torsion, or thermal loading are investigated in reference 9.
Results are also presented that demonstrate the coupling effects of the shell anisotropies. In addition,
results are presented for two more conventional unsymmetric laminates and a typical quasi-isotropic
laminate. In references 10 and 11, bending boundary layers are also examined for balanced,
symmetrically laminated and balanced, unsymmetrically laminated cylindrical shells, in the context of
nonlinear prebuckling deformations that occur as a result of compression and thermal loads. In
particular, the effects of laminate stacking sequence on the extent and character of the bending
boundary layers are presented for two groups of three similar laminates. Two of the laminates are
unsymmetric. In reference 12, a linear analysis is presented that focuses mainly on balanced, symmetri-
cally laminated cylinders, and an expression is given for the length of the bending boundary layers near
the cylinder ends that is based on the Love-Kirchhoff shell equations.

Most recently, Goldenveizer’'s static-geometric duality principle (ref. 15) has been used in refer-
ence 13 to reduce the Sanders-Koiter equations (refs. 16 and 17) for fully anisotropic, right-circular
cylindrical shells to two coupled, fourth-order equations that use a stress and a curvature function as the
unknown, primary field variables. The reduction is done by adding certain negligibly small terms to the
stress-strain relations, which are intrinsically in error because they must be established experimentally.
The approach demonstrates how the static-geometric duality principle can be used to reduce greatly the
amount of algebra needed to obtain results. Eigenfunction solutions are also presented for specially
orthotropic cylinders that are in agreement with corresponding results presented in reference 6. More-
over, asymptotic formulas that can be used to determine axisymmetric bending boundary-layer attenua-
tion lengths and the decay of other unsymmetric, self-equilibrated edge loads are given.

With the exception of reference 13, explicit expressions for estimating the size of axisymmetric
bending boundary layers in fully anisotropic, right-circular cylinders are not found in the literature.
Moreover, there appear to be even fewer results for laminated-composite shells made of contemporary
material systems and essentially no substantial parametric studies. The present paper focuses on devel-
oping meaningful estimates of attenuation lengths of bending boundary layers in balanced and
unbalanced, symmetrically and unsymmetrically laminated circular cylinders. The analysis is based on
the linear Sanders-Koiter shell equations and contains the Love-Kirchhoff shell equations (ref. 1) and
Donnell’'s equations (ref. 1) as special cases, and is somewhat similar to the analyses presented by
Reuter (ref. 4) and Chaudhuri, Balaraman, and Kunukkasseril (ref. 8). With these equations, explicit
expressions are obtained and nondimensional parameters are presented that characterize the effects of
cylinder geometry and laminate construction on the size of a bending boundary layer in a very general
manner. In particular, generic design curves are presented that use the nondimensional parameters to
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show the effects of laminate orthotropy and anisotropy on the attenuation length in a concise and
encompassing manner. In addition, values of these parameters are presented for a very wide range of
orthotropic and anisotropic laminate constructions. Also, differences in the results that were obtained in
the present study by using the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and
Donnell’'s equations are discussed. Key details of the analysis presented are elaborated upon in
appendixes A—-C. An example problem is included in appendix D that demonstrates how to perform the
calculations that were used to generate the results of the present study.

Analysis

The ordinary differential equation that governs the axisymmetric bending behavior of a right-
circular cylinder that is subjected to edge loads or displacements and surface tractions is obtained by
first specializing the linear Sanders-Koiter shell equations that are given in appendix A for axial sym-
metry. For the equations presented herein, x Gaddnote the axial and circumferential coordinates of
a right-circular cylinder, respectively, and the specialization to axial symmetry is obtained by eliminat-
ing all terms in the equations that are differentiated with respect to the circumferential coddirtae
resulting set of equations for axisymmetric behavior is given in appendix B. The ordinary differential
eqguation that governs the axisymmetric bending behavior of a right-circular cylinder that is subjected to
edge loads or displacements and surface tractions is derived in appendix B and is given by

4
(;xvxﬂsig”(ngp(x) )

where S, Q, and P(x) are defined in appendix B by equations (B55), (B56), and (B57), respectively,
and w(x) is the radial deflection that is positive valued when outward. The coefficients of equation (1)
depend on the subscripted A, B, and D constitutive terms of classical Love-Kirchhoff-type laminated
shell theory (e.g., see ref. 18, pp. 190-202) and the radius of the cylinder middle surface R.

To determine the specific form of the solution to equation (1), it is useful to examine the positive-
definiteness conditions on the strain-energy density function. The strain-energy density function for this
problem is given by

— (o] o] (0] (0]
22 =Nyex +Ngeg + Nxevge + MKy +MygKxg 2)
where Ny ,Ng , andN,g are the membrane stress resultshits,  Mand are the bending stress
resultantsg; £ ,angkg  are the middle-surface membrane strainsgyand Kggand are the middle-

surface bending strains. By using equations (B22), (B23), and (B28), the strain-energy density function
is expressed as

2%=NX82+N988+'T'\/26+MXK2 (3



The strain-energy density is expressed in terms of the strains and constitutive terms by using the consti-
tutive equation given by equation (B29); that is,

(0] T| N | (0]
Ex Ann A Ags Bip || &
_1]€3 A1z Ap Ay B ||£

U= — — = 4
2 \veo| |Ae A2 Aes Bis || Vge
KS Biu By Big Dix | |k§
The stiffness terms in equation (4) that have overbars are defined by equations (B31)—(B35) and are
functions of the shell wall thickness-to-radius parameter, By enforcing positive definiteness of the

strain-energy density function (e.g., see ref. 19), the requirement that the diagonahigris,, :
Agg, andDq, be positive valued is obtained. Moreover, the following determinants are positive valued:

Al A

=A11Azn-AL>0 (5)
Az Az

Ann A A
n _ 2 |x 32 ~2 ~ X
A Az A —(A11A22—Alz)Aee—AllAze—AzzAle+2A12A16A26>0 (6)
A Az Aes
Likewise, positive definiteness of the strain-energy density function also requires that the determinant

of the constitutive matrix in equation (4) be positive valued. Moreover, by rearranging the strain-energy
density function into the form

ey ! Ain A A By fﬁg

z-1 Yool | A 666 Az Bis |/ V% @)
2\ f A Az Ax B || ef
Kf(’f By B B D \Kg

the following additional positive-definiteness condition is obtained:

Ay A - =2
_ _ :A11A66_A16>0 (8)
A Aes



The homogeneous solution for equation (1) involves the square root of the ql@mﬁﬁ/ . By
using equations (B55) and (B56), this quantity is given by

4C,C3—C3
Q-=—"_-° ©)
16C7
Substituting equations (B41)—(B43) into equation (9) and simplifying, the qu@ﬁt@z is found to

be given by

Q-SP=—, | _® (10)
4c3 | A1s Az Ass Big

It follows logically thatQ—S2 >0 because the positive-definiteness of the strain-energy density func-
tion requires that the determinant in equation (10) be positive valued. Moré@véi%>0 implies
Er;at Q >0, and Q > 0 implies th?-:k >0. Equations (6), (8), and (B43) indicat€ gvad . Thus,
C. >O yields the condition thaC,=D¢>0 (see egs. (B49) and (B50)). BecAyse 0 ¢~ 0;

1
Because Q is always positive, it is convenient to introduce the expression

1
T?=Q=— = (11)
4R azlele

such thafT2—S?>0 , and to express equation (1) as

dw +4s@ + 4T = AX) (12)

dx? dx?

Equation (12) is a linear, fourth-order, nonhomogeneous ordinary differential equation with con-
stant coefficients. The characteristic equation of equation (12) is given by

A +4SA2+4T%2=0 (13)

By using the knowledge tha?—S?>>0 , the roots of the characteristic equation are obtained from the
quadratic formula; that is,

(A2 1,2=2(—Sii v T2—82) (14)

7



where i :ﬁ. Solution of this equation far yields four roots of equation (13) that are pairs of
complex conjugates given by

Maoga=t(/T-S#i\/T+3) (15)

The homogeneous solution of equation (12) can be written as follows:

W) =K1e Y TS sin(/T+Sx+Kp) + Kge ™V T2 ¥gin(/T+Sx+Ky) (16a)

wherex O[OL] . The symbol&; K, K5 ,and, are real-valued constants that are determined from
the boundary conditions given by equations (B18) and (B19). The solution given by equation (16a) rep-
resents a damped, oscillatory response that decays from each end of the cylinder. The regions near the
edges of the cylinder, where the amplitude @f(xy is the largest, are called the bending boundary lay-

ers. All response quantities that exhibit bending boundary layers involve derivatives of equation (16a)
and can be expressed in the general form

R =F16 Y TSXsin(/T+S x +Fy) +Fae St sin(/T+Sx +Fy) (16b)

where K through R are constants.

When the length of the bending boundary layers is less than half the cylinder length, which is typi-
cal, equations (16) can be partitioned into one part that applies to the edge x = 0 and the other that
applies to the edge x = L. The response quantities for the region near x = 0 are obtained by setting
F3; =0 in equation (16b). Similarly, the response quantities for the region near x = L are obtained by
setting i = 0 in equation (16b).

Formulas for Attenuation Length

Formulas for the attenuation or decay length of the bending boundary layers are obtained by first
noting that the response quantities for the region near x = 0O are bounded by the two functions

+Fe v TSX " and that the response quantities for the region near x = L are bounded by the two func-

tions+Fze ¥ TS | et d denote the length for which the solution attenuates or decays to a value of

€ times the amplitude ;For F;. A reasonable estimate of the attenuation length or decay length d is

obtained by replacing x and (tx) with d in the exponential terms of equation (16b) and by noting
that the amplitude of F(x) is attenuated by the exponential terms. Thus, the attenuation length or decay

length is given bg Sd_¢  which yields

d=—|ns('l'—3_ﬂ2<% (17)



By using equations (B55) and (11), equation (17) is expressed as

d _ d°

ﬁ —ﬁﬂ (18)

whered® is the attenuation length, in which anisotropy is neglestedL], that is, given in nondimen-
sional form by

d° _ Ine

T 50 (19)

The symbol h is the shell wall thickness, amd  and  are nondimensional orthotropy and anisotropy
parameters or factors, respectively, that are given by

1/4
12A11Dq4

2
(A11A - AT

0= (20a)

12
2 1/4 -
A11Axn—AT, _ by

= —— (20b)
Au \/ 820D11€

where the symbols in these equations are defined in appendix B.

Other useful forms of equation (20a) are obtained by introducing an effective membrane Poisson’s

A
ratio vm:i, which is the geometric mean of the two Poisson effects associated with the
\/ A11°22

inplane principal direction of a homogenized orthotropic material. By using this effective membrane
Poisson’s ratio, equation (20a) is expressed as

1/4
12D44
T S (21)
Axh“l-vp)
For a single layer of homogeneous, specially orthotropic matepiat,./ViVor #=1 , and
V4
Ey

O=|l=F7 22
Ex(1-Vv1vo) (22)




which, when substituted into equation (19), yields results identical to the results presented by Kraus
(ref. 1), where the decay tolerance is giverebye ™. Likewise, for a single layer of isotropic material
with an arbitrary thickness,,=v #=1, and

1

YN 23
Va- -

For values 0D.2<v<033 g varies by less than 2 percent. A 90-percent-decay lergiil( that is

— . : o d° h
a good approximation to the behavior of homogeneous, metallic shells is g|Vﬁn=by79

0:

R
Applying this formula, for example, to the Space Shuttle solid rocket booster described in references 20

and21 (R=72in.,h=0.5in.)givdS§ =0.15R =10.8in.

It is interesting to note that the differences between the attenuation lengths that are based on the
Sanders-Koiter, the Love-Kirchhoff, and Donnell’s equations appear in the coefficient and in the
symbols with overbars in equation (20b) for the anisotropy fa¢tor  (see egs. (B22), (B31)-(B35), and

(B45)—(B49)). For these equations, the Sanders-Koiter theory is givep:b% and the Love-

Kirchhoff theory is given byl=1 . Donnell’'s equations are giverpis0 . For isotropic and specially
orthotropic cylinders#=1 and the three sets of shell equations yield identical results. Similarly, for
antisymmetric CrOSS-pIy Cylinders (é: A26 = D16 = D26 = Ble = 826 = BlZ = 866 = 0)

, |14 Y
B11 ApB11
1- (24)

A= 1-
AP (A11A5—A3)(A 1Dy, —B)

and the three shell theories yield identical results.

Simplified Formulas for #

For balanced, symmetrically laminated cylinders, the only anisotropic constitutive termggare D
and Dys, and the anisotropy factor is given Jay:‘{/; where

22 (h)z
HD R
e=1-— ; (25)
RJ Aggh?
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For thin-shell theories, such as the Sanders-Koiter theory and the Love-Kirchhoff tEeoéLﬁ . This

result suggests that a useful approximation to equation (25) and the anisotropy factor can be obtained

. . h . :
from a power series expansion for small valuegof . This process yields

2/ )2 2
h D16
;4:1—*2(R) — (26)
AgeD11h
2

. . 3 D16 . o

In this expression<p<— an@si2 <1 Thus, the approximate formula#for indicates
2 AgeD11h

that for most practical applications of thin-shell theory, the differences between the three different shell
theories considered herein and the effect of the flexural anisotropy of a general symmetrically laminated
cylinder are negligible.

A simplified formula for the anisotropy factor can be derived for the general expressjgn for  that
is given by equation (20b). For this case, the following power series expansions for small vagues of

are used:
_ h h\?
e=e, +e1(R) + ez(R) + D 27)
2
L h h
12 =8+ o | tap |+ (28)
] h h)\2
axp =ayt a122(R) + azzz(R) + (D (29)
2
. h h
A6 =86+ 128 1 |+ 8220 & + (I (30)
_ h h\2
o1 =byg + blZl(R) + b221(R) + D (31)

Substituting equations (27)—(31) into equation (20b) and expanding the resulting expression in a similar
manner yields

h h)\2

11



The coefficient#, is a very complicated expression, and as a result, the following first-order approxi-
mation of# is used herein; that is,

A=A, (33)

h
el

where# is the value of equation (20b) wjtkrO , which is the anisotropy factor that corresponds to

the use of Donnell's equations. The expressior)éfgr is given by
~12
2 iz
[ A1AR—AL L boq
A=A dzé| |l-—— (34)

1 \/ @2P11€0
In this expression@y, anlbdy;  are obtained from equations (B45)-(B48) by sgttiig in equa-
tions (B31)-(B35). The expression fe is obtained from equation (B49) in a similar manner. The

term ¢, in equation (33) represents a first-order correction to the results that correspond to Donnell's
equations and is given by

\/ 322D11€0 (aZZel + 3122“0) + 2azz( b121€0— b21el) —2a179021¢
1=
4ay£ (\ / axD11€g — bZl)

where the terms that appear in equation (35) are given in appendix C. In addition, further simplifications

to 4, and ¢; are also presented in appendix C for unbalanced and balanced symmetric laminates and
for balanced, unsymmetric laminates that include the subclasses of general antisymmetric laminates,
antisymmetric cross-ply laminates, and antisymmetric angle-ply laminates. The relative gjzandf

its contribution to equation (33) are examined parametrically in the subsequent section of the present
study.

(39)

Results and Discussion

Equations (18) and (19) form the basis for the parametric study presented herein. In particular,
the two equations isolate the contributions of shell orthotropy and shell anisotropy to the bending
boundary-layer decay length with nondimensional parameters and imply the generic design-chart repre-
sentations that are illustrated in figures 1 and 2. In figure 1, generic results are presented that show the

nondimensional, 90-percent-decay length givenja%& , as a function of the orthotropy param-

€=01

etero, for selected values of the anisotropy parametéx 90-percent-decay length was selected herein

to yield an accuracy that is approximately to within the accuracy of the experimentally determined
material properties, but other values could be used.

In a manner similar to figure 1, figure 2 shows the nondimensional, 90-percent-decay length, as a
function of the anisotropy parametey for selected values of the orthotropy paramétdresults that
correspond to balanced, symmetrically laminated cylinders are given by a va#relpf and results
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that correspond to an isotropic shell wall are indicated in the figures by the filled circle with an ordinate
value of 1.79. Overall, these two figures represent results that are applicable to a vast range of laminate
constructions and provide a common basis for comparison of regular and hybrid laminates made of dif-
ferent material systems and laminate stacking sequences. In general, the figures show increases in the
nondimensional 90-percent-decay length, with increases in either the orthotropy pararoetie
anisotropy paramete#. In addition, the results in figures 1 and 2 clearly indicate the effect of neglect-

ing shell-wall anisotropy on the attenuation of a bending boundary layer.

The actual value of the nondimensional, 90-percent-decay length depends on the particular values
of the orthotropy and anisotropy parameters of a given laminate. Thus, additional results are presented
subsequently that show how the orthotropy parametand the anisotropy parametérvary with
laminate construction. In particular, valuescond# are presented first for balanced and unbalanced
symmetrically laminated cylinders. Then, values are presented for balanced and unbalanced unsymmet-
rically laminated cylinders. Nine different contemporary material systems were used to generate
these results. These material systems include boron-aluminum, S-glass-epoxy, a typical boron-epoxy,
AS4/3501-6 graphite-epoxy, AS4/3502 graphite-epoxy, IM7/5260 graphite-bismaleimide, Kevlar
49-epoxy, IM7/PETI-5 graphite-epoxy, and P-100/3502 pitch-epoxy materials. The mechanical
properties of these material systems are presented in table 1; the nominal ply thickness that was used is
0.005 in. An example problem in appendix D demonstrates how to perform the calculations that were
used to generate the results that are presented subsequently.

Balanced, Symmetrically Laminated Cylinders

Symmetrically laminated shell walls are characterized mathematically by values of zero for the sub-
scripted B terms that appear in the constitutive equation (A15). In addition, balanced, symmetrically
laminated shell walls do not exhibit coupling between extension and shear, which is characterized by
A1 = Ayg = 0 in equation (A15). Shell walls of this class are strictly specially orthotropic for many
laminates. However, for some wall constructions, balanced, symmetric laminates exhibit anisotropy in
the form of coupling between pure bending and twisting of the shell wall. This type of anisotropy is
manifested by nonzero values of thegland Dy constitutive terms in equation (A15). However, the
discussion of equation (26) that has been given herein indicates that this type of anisotropy is negligible
for thin shells and that the differences between results obtained from the Sanders-Koiter, the
Love-Kirchhoff, and the Donnell theories are insignificant. Moreoer,1 for this class of laminated-
composite shell walls, and the attenuation behavior is governed by the nondimensional orthotropy
parameter that is given by equation (20a). Furthermore, equations (18) and (19) indicate that the
attenuation length is a constant multiple of the orthotropy parameter that depends on the attenuation-
tolerance parameter For this case, trends that are exhibitedlaye identical to those exhibited by the
attenuation length based on any value.of

Values of the orthotropy parametgiare presented in figure 3 and table 2 for single-ply, homoge-
neous, specially orthotropic and isotropic shell walls, with arbitrary thickness, as a function of the
ratio of the principal elastic moduli,,E,. For these results, the orthotropy parameter is given by
equation (22) and is expressed in the following, more convenient form:

E E
0= 2(1—2v%z) (36)



One curve (shown in fig. 3), which is essentially several coincident curves, corresponds to general
results for0.2<v,,<0.35. In addition, specific results for the nine material systems considered herein
and for a typical aluminum and a steel are indicated by the square symbols in the figure. The results in
figure 3 indicate that the effects of variations in the major Poisson’s ratio on the orthotropy pagameter
are small compared to the effect of variations in the ratio of the principal elastic moduli. Moreover, the
results show that decreases rapidly as the ratio of the principal elastic moduli increases, particularly
for values of B/E; less than approximately 0.1, which corresponds to most of the contemporary ortho-
tropic materials considered herein. Figure 3 also shows that an isotropic material corresponds to

Values of the orthotropy parameteifor the single-ply, homogeneous, specially orthotropic cylin-
ders investigated by Cheng and He (ref. 6) were also obtained. A comparison of the results obtained in
the present study, with the corresponding results of reference 6, is presented in table 3 for boron-epoxy,
glass-epoxy, and graphite-epoxy materials and for the cylinder radius-to-thickness ratio R/h = 208.311.
Moreover, a range of results is shown for reference 6 that corresponds to various simplifications that
were used in the equations that govern the response. The actual material properties that were used are
given in reference 6. In table 3, the quantity used for comparison is given by

_Y3 /R
%(@)—7 N (37)

which is the real part of the exponeatthat appears in the eigenfunction solution used by Cheng and
He (n =0 in eq. (25) of ref. 6; see also eq. (47) of ref. 13), which corresponds to the decay or attenuation
of the response. The orthotropy parameter shown in equation (37) is defined by equation (36). The
results in table 3 show very good agreement (less than 1 percent difference) for all three materials. In
addition, the results obtained herein that are shown in table 3 for the boron-epoxy material are also in
excellent agreement with the corresponding results presented by McDevitt and Simmonds (ref. 13).

Values of the orthotropy parameteare presented in figure 4 and table 4 for multilayered)jl

laminates made from the nine material systems as a function of the fiberpamdieh is measured

from the x-axis toward th@-axis. The results are independent of the stacking sequence number m and
show a wide variation i@ with the material system. The results also show, for the most part, a wide
variation in¢ with the fiber anglep and a reduction i as the fiber angle increases frofnt® 9C. The

largest value (2.93) and the smallest value (0.34) afe exhibited by the unidirectional laminates

made from P-100/3502 pitch-epoxy material and correspond to Va|lt75£d f equal to 5.13 and
Rh €=01

0.59, respectively. Moreover, the greatest variation with the fiber angle (approximately 8.7 times)

is exhibited by the laminates made from P-100/3502 pitch-epoxy material. The smallest variation is

exhibited by the laminates made from the boron-aluminum material.

Results are presented in figure 5 that show the values of the orthotropy parameter fog)|F45/0
[(0o/%45)]s [(x45/90)]s [(90,/%45),]s, [(45/0/90)]s, and [(0/90/+48)]s laminates made of
IM7/5260 graphite-bismaleimide material for values of the stacking sequence number m = 1 to 6.
Values of ¢ range from approximately 1.53 to 0.64. These results show that the curves for the
[(#45/0,)s and [(G/+45),]s laminates approach =141 as m increases to a value of 6, with the
curve for the [(/+45),]s laminates converging from above and the other curve converging from
below. The higher values of for the [(0,/+45),]s laminates are attributed to the higher axial bending
stiffness that is obtained by placing tfeplies at the outer surfaces of the laminates, particularly for the
lower values of the stacking sequence number m. Similarly, the results in figure 5 show that the curves
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for the [(x45/9Q),]s and [(9Q/+45),]s laminates approach =0.76  as m increases to a value of 6,
with the curve for the [(+45/90,,]s laminates converging from above and the other curve converging
from below. Likewise, the results in figure 5 show that the curves for the [(x45]Q/2()
[(0/90/+45),]s quasi-isotropic laminates approagix 1.03 as m increases to a value of 6, with the
curve for the [(0/90/+45)]s laminates converging from above and the other curve converging from
below.

Overall, the results in figure 5 indicate that the [(x4R{s and [(G/+45),]s laminates exhibit
higher values of the orthotropy parameter than the [(+45/Q]9@nd [(0/90/+45)]s quasi-isotropic
laminates, which exhibit higher values of the orthotropy parameter than the [(Z43/9@nd
[(90,/+45),]s laminates. This trend corresponds to a reduction in the valge of  as the axial bending
and extensional stiffnesses of the laminates decrease.

Results are presented in figure 6 and table 5 that show the effect of the nine material systems con-
sidered herein on the orthotropy parameter for thg44®),]s laminates. Values o0 range from
approximately 1.67 for P-100/3502 pitch-epoxy material to 1.09 for boron-aluminum material. Most of
the materials exhibit values @ in the range of approximately 1.4 to 1.6. All curves show about the
same reduction i@  as the stacking sequence number m increases.

Results similar to those in figure 6 and table 5 are presented in figure 7 and tables 6 and 7 that
show the effect of the nine material systems on the orthotropy parameter for the [(+43049@)
[(0/90/+45),]s quasi-isotropic laminates. These results show a much smaller variation in the orthotropy
parameter with material system and stacking sequence number for the quasi-isotropic laminates than for
the [(0,/+45),ls laminates in figure 6. In particular, values®f for the quasi-isotropic laminates range
from approximately 1.15 to 1.0. The largest value@ of in figure 7 are exhibited by the laminates made
of the P-100/3502 pitch-epoxy material. Moreover, the results show a larger variafion in  with stack-
ing sequence number for the [(0/90/+4Rk)laminates than for the [(+45/0/9Q) laminates.

Unbalanced, Symmetrically Laminated Cylinders

Unbalanced, symmetric laminates exhibit anisotropy in the form of extensional-shear coupling
(A% 0, Ayg % 0) in addition to flexural anisotropy (g# 0, D,g# 0). For these laminates, the value of
the anisotropy parametey , given by equations (20b) and (33), is not equal to unity. Simplified
expressions for the anisotropy parame{z?r and the first-order correctiondactor , defined by equa-
tions (33)—(35), are given by equations (C23) and (C24), respectively. Equation (C24) indicates that the
value ¢, depends on coupling between the membrane and flexural anisotropies.

Values of the orthotropy parametér for Pfzls symmetric, unidirectional laminates for the
nine material systems considered herein are also presented in figure 4 and table 4; that is, the curves
presented in figure 4 and the data presented in table 4 for thgJ{8ymmetric angle-ply laminates
are identical to those for the correspondingplgls Symmetric, unidirectional laminates. Thus, the
orthotropy behavioral trends for the undirectional laminates are identical to those discussed previously
for the symmetric angle-ply laminates and are also independent of the stacking sequence number m.

Results for the anisotropy parametey and the first-order correction tagtor are shown in fig-
ure 8 and table 8 and in figure 9, respectively, for the)i#s Symmetric, unidirectional laminates
with the nine material systems considered herein and are independent of the stacking sequence number
m. The results in figure 8 and table 8 show a substantial variatigy in with fiber orientation and with
material system. The results show thay is the most pronounced for values of the fibep angle
between approximately 85and 80 and that the contribution of the anisotropy to the attenuation
behavior is essentially insignificant (<1.05) for valuespof 25° and@ > 85’. Moreover, the largest
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variation in#, with fiber angle is exhibited by the laminates made of the P-100/3502 pitch-epoxy
material, and the smallest variation is exhibited by the laminates made of boron-aluminum material.
Values of#, range from approximately 1.42 for the maximum point on the curve for the P-100/3502
pitch-epoxy material to a value of 1.

The results shown in figure 9 for the first-order correction faétpr for thgJ(ts symmetric,
unidirectional laminates indicate a substantial relative variatiofiin with fiber orientation and with
material system, but all values ¢f; are less than approximately 0.45. Morgqver, is less than
approximately 0.2 for all materials except the P-100/3502 pitch-epoxy material. For the upper bound of
1
'2-('),
defined by equation (33) is practically negligible. Equation (C24) indicates that the insignificance of
¢, means that the coupling of the membrane and flexural anisotropies is negligible for these laminates.
The insignificance ofZ, is illustrated and verified in figure 10 for the){#]s symmetric, unidirec-
tional laminates made of IM7/5260 graphite-bismaleimide material (black curves) and P-100/3502
1
E(—).
correspond to 90-percent-decay lengths for which the anisotropy is neglected. In contrast, the solid
curves and the coarsely dashed gray curve include the effect of the membrane anisotropy and are shown
for values ofu = 0, 1.0, and 1.5. For these values, results that correspond to the Sanders-Koiter theory

thinness of thin-shell theory, given blg the contributionAyf to the anisotropy factor

pitch-epoxy material (gray curves) fcg The finely dashed curves shown in figure 10

. : 3 :
and the Love-Kirchhoff theory are given by=§ gnd 1.0, respectively. Results that correspond to

Donnell's equations are given lpy= 0. The solid curves in figure 10 far= 1.0 and 1.5 are based on

the exact solution that uses equation (20b) for the anisotropy factor. The corresponding curves that are
based on the approximate formula for the anisotropy parameter that is given by equation (33) are identi-
cal. The solid curves and the coarsely dashed gray curve indicate that yagéids a small effect,

which implies that all three shell theories yield essentially the same results ané=h#y for the

[(+®)omls symmetric, unidirectional laminates. Comparing the solid and finely dashed curves in

figure 10 also indicates that neglecting the membrane anisotropy underestimates the bending boundary-
layer decay length by as much as approximately 31 percent and 21 percent for shell walls made of
P-100/3502 pitch-epoxy and IM7/5260 graphite-bismaleimide materials, respectively.

Values of the orthotropy parametér  for [($4890),]s and [(0/90/+45)]s laminates made of
the nine material systems considered herein are also presented in figure 7 and in tables 6 and 7, respec-
tively. More specifically, the values @  for these laminates are identical to the values for the corre-
sponding quasi-isotropic laminates. Results for the anisotropy parasfigter , defined by equation (34),
are shown in figure 11 for [(+48/90),]s and [(0/90/+45),,]s laminates made of the nine material
systems considered herein. The results in figure 11 are identical for the two laminate families, show no
significant variation in#y with the stacking sequence number m, and only a slight variation (less than
approximately 9 percent) with the material system. Value# pf range between approximately 1.1
and 1.0. Corresponding results for the first-order correction fagtor , defined by equation (35),
which are not shown herein, were obtained and indicate that all valus of for thgJ(9@R ]
and [(0/90/+4%),,s laminates are less than approximately 0.1. These values indicate that the contribu-
tion of ¢, to the anisotropy factor defined by equation (33) is practically negligible. #ms for
these laminates. The values#f shown in figure 11 suggest that neglecting the anisotropy would, at
most, underestimate the bending boundary-layer decay length by approximately 10 percent. The insig-
nificance of@, also means that the coupling of the membrane and flexural anisotropies are unimportant
with regard to the primary effect of the individual shell anisotropies that is captured by the parameter
A0.
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Balanced, Unsymmetrically Laminated Cylinders

Balanced, unsymmetric laminates may, in general, exhibit anisotropy in the form of coupling
between pure bending and twisting;@* 0, D,g # 0) and coupling between membrane and bending
action, which is manifested by nonzero values for any of the subscripted B-terms in equation (A15).
These laminates do not, however, exhibit extensional-shear coupligg (Ao = 0). For the unsym-
metric laminates that are discussed subsequently, the first ply in the stacking sequence is the innermost
ply of a cylinder. Simplified expressions for the anisotropy paraméter and the first-order correction
factor ¢, , defined by equations (33)—(35), are given by equations (C27) and (C29), respectively. Equa-
tions (C28) and (C29) indicate that the value&f depends on coupling between the flexural anisot-
ropy and the anisotropy caused by unsymmetric lamination.

Results for regular, antisymmetric angle-ply laminates are shown in figures 4 and 12-16, and in
tables 4 and 9. In particular, values of the orthotropy parargeter  fpfJEunsymmetric laminates
made of the nine material systems considered herein are also presented in figure 4 and table 4; that is,
the orthotropy-parameter curves presented in figure 4 and the data presented in table 4 fox.fhe [(=
symmetric angle-ply laminates are also identical to those f@j J{% unsymmetric laminates. Thus, the
orthotropy behavioral trends for the {fi,]t unsymmetric laminates are identical to those discussed
previously for the corresponding symmetric angle-ply laminates and are also independent of the stack-
ing sequence number m.

Results for the anisotropy parametéy defined by equation (C27) are shown in figure 12 and
table 9 for two-ply [#9]+ unsymmetric laminates made of the nine material systems considered herein.
The results in figure 12 show a substantial variatiowjn with fiber orientation and with material
system and also show thet, is the most pronounced for values of the fibep Gagheen approxi-
mately 13 and 60. Moreover, the largest variation #,  with fiber angle is exhibited by the laminates
made of the P-100/3502 pitch-epoxy material, and the smallest variation is exhibited by the laminates
made of boron-aluminum material. Values #f, range from approximately 0.75 for the minimum
point on the curve for the P-100/3502 pitch-epoxy material to a value of 1.0. The results in figure 13
show the variation in¢, with the fiber angfeand the stacking sequence number m fo@){Gr
unsymmetric laminates made of the P-100/3502 pitch-epoxy material. These results show a rapid
decline in the importance of , that is manifested by the curve moving closgy to =1, as the stack-
ing sequence number increases. For m = 2, 093 < <1

Results for the first-order correction fac®@y  are shown in figure 14 for two-ply tnsymmet-
ric laminates made of the nine material systems considered herein. The results in figure 14 also show a
substantial variation iZ;  with fiber orientation and with material system. However, the maximum
value of¢; < 0.07 for all material systems. Results are presented in figure 15 that show the variation in
¢4 with the fiber anglep and the stacking sequence number m fo@)tr unsymmetric laminates
made of the P-100/3502 pitch-epoxy material. These results show significant reductigns in with an
increase in the stacking sequence number.

Overall, the results in figures 14 and 15 indicate that the contributiéh of  to the anisotropy factor
defined by equation (33) is negligible for the upper bound of thinness givgn:byzlo, which means
that # =4, . Thus, the results in figure 12 for the two-ply]funsymmetric laminates indicate that
neglecting the shell anisotropy overestimates the bending boundary-layer decay length (because
A#,<1) by as much as approximately 33 and 22 percent for shell walls made of P-100/3502 pitch-
epoxy and IM7/5260 graphite-bismaleimide materials, respectively. The insignifica#ge of is illus-
trated in figure 16 by the gray and the black curves for the laminates made of P-100/3502 pitch-epoxy
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and IM7/5260 graphite-bismaleimide materials, respectively. The solid black and the gray curves are
for the upper bound of thin-shell theory that is given-by= >0 The finely dashed curves shown in
figure 16 correspond to 90-percent-decay lengths for which the anisotropy is neglected. In contrast, the
solid curves include the effect of the shell anisotropy and are shown for values @f1.0, and 1.5.

The solid curves fop = 1.0 and 1.5 are based on the exact solution that uses equation (20b). The corre-
sponding curves that are based on the approximate formula for the anisotropy parameter given by
equation (33) are identical. The solid curves indicate no significant effect of varyimgich implies

that all three shell theories yield essentially the same results forgheUrsymmetric laminates. For

[(Z@) ]t unsymmetric laminates with m > 1 that are made from any of the nine material systems
considered herein, the results in figures 12 through 15 indicate that neglecting the shell-wall anisotropy
will have a small effect on the calculation of the bending boundary-layer decay length.

Values of the orthotropy paramet@r  and the anisotropy parapdgter p/fmqlﬁ) unsymmetric
cross-ply laminates are shown in figure 17 and table 10, and in figure 18 and table 11, respectively, for
the nine material systems considered herein and as a function of the percentggesf Bor this class
of laminates, equation (20b) simplifies to equation (34); tha¥ 5,4, . This simplification means that
the anisotropy parameter is independenpuofvhich means that all three shell theories considered
herein yield identical results.

The results in figure 17 show a large variatior@in  with the percentageptie® for most of the
material systems. In addition, the results show a large variatién in ~ with the material system for the
laminates that are dominated by’ 3fies (less than approximately 10 percehplies) and by0° plies
(more than approximately 80 percerft flies). Values of¢0 vary the most for laminates made of
P-100/3502 pitch-epoxy material, with values that range from approximately 0.3 to 2.93. Most of the
materials exhibit values @ in the range of approximately 0.6 to 2.1.

The results in figure 18 also show a large variatio# jn with the percentageladdfor most
of the material systems and a large variation with material system for laminates with < 70 percent
0° plies. Moreover, the results show thgg is the most pronounced (most different from a value of 1)
for laminates with approximately 15 to 30 percehples. The largest variation i,  with the per-
centage of Dplies is exhibited by the laminates made of the P-100/3502 pitch-epoxy material, and the
smallest variation is exhibited by the laminates made of boron-aluminum material. Vakdgs of range
from approximately 0.57 for the minimum point on the curve for the P-100/3502 pitch-epoxy material
to a value of 1. Thus, in some cases neglecting the shell-wall anisotropy overestimates the bending
boundary-layer decay length by as much as approximately 75 percent for a shell wall made of
P-100/3502 pitch-epoxy material. This result is illustrated in figure 19 by the gray curves. Similar
results are presented in figure 19 fop/8®,]+ unsymmetric cross-ply laminates made of IM7/5260
graphite-bismaleimide material (black curves). The solid black and the gray curves include the effect of
the shell anisotropy, and the finely dashed curves shown in the figure correspond to 90-percent-decay
lengths for which the anisotropy is neglected. The results in figure 19 show that including the effect of
anisotropy is particularly important for laminates with less than approximately 70 petqaigsCand
more than approximately 5 percefit@ies.

Unbalanced, Unsymmetrically Laminated Cylinders

Unbalanced, unsymmetric laminates may, in general, exhibit full anisotropy in the form of coupling
between pure bending and twisting;@* 0, D,g # 0) and coupling between membrane and bending
action, which is manifested by nonzero values for any of the subscripted B-terms in equation (A15), and
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extensional-shear coupling {A# 0, Ay # 0). The expressions for the anisotropy parametgr and

the first-order correction factaf; that are given by equations (C2)—(C22) indicaté jhat exhibits
coupling between the membrane anisotropy and the anisotropy that is caused by unsymmetric lamina-
tion, and tha??; exhibits coupling between all three types of anisotropies. One family of laminates that
exhibits all these anisotropies is the JliQ]+ unbalanced, unsymmetric laminates with p > 0 a#dq

Values of the orthotropy paramet@r  and the anisotropy parardgter $@) [ ¥Qnbalanced,
unsymmetric laminates are shown in figure 20 and table 12 and in figure 21 and table 13, respectively,
for the nine material systems considered herein and as a function of the percentdgplies.7The
results in figure 20 show a large variatiordin , with the percentage® @iié8 for most of the material
systems. The results also show a large variatioft in  with the material system for the laminates that
aredominated by“plies (less than approximately 20 percerft Giies). Values o vary the most for
laminates made of P-100/3502 pitch-epoxy material, with values that range from approximately 0.5
to 3.0.

The results in figure 21 also show a substantial variatio#yin with the percentadepbes Gor
most of the material systems and a large variation with material system for laminates with between
approximately 45 and 100 percent fflies. The largest overall variation#,  with the percentage of
70° plies is exhibited by the laminates made of the P-100/3502 pitch-epoxy material, and the smallest
variation is exhibited by the laminates made of boron-aluminum material. Valugg of range from
approximately 1.4 to 0.95, which correspond to the maximum and minimum points, respectively, on the
curve for the P-100/3502 pitch-epoxy material.

Results for the first-order correction factdr1 were also obtained fq;/qg]Q unbalanced,
unsymmetric laminates made of the nine material systems considered herein but are not included in the
present paper. These results also show a substantial, relative variaggn in with the percentage of
70° plies, but overall, the magnitude @ s less than approximately 0.25 for the P-100/3502 pitch-

epoxy material and < 0.1 for the other materials. These results indicate that the contribg@tion of  to the
anisotropy factor defined by equation (33) is negligible for the upper bound of thin-shell theory that is

given byg = 2—10 which means tha# =4, . Thus, the results in figure 21 suggest that, in some
cases, neglecting the shell-wall anisotropy may overestimate the bending boundary-layer decay length
and, in other cases, may underestimate the decay length. This statement is based on the observation that,
for example, when#,<1 , including anisotropy reduces the value of the decay length given by

equations (18) and (19). The insignificanceZgf ~ also means that the contribution of the flexural anisot-

ropy to the coupling of the anisotropies is negligible. The insignifican@®, of is clarified in figure 22

for laminates made of P-100/3502 pitch-epoxy material (gray curves) and of IM7/5260 graphite-
bismaleimide material (black curves). The solid black and the gray curves are for the upper bound of
thinness given byg = % The finely dashed curves shown in the figure correspond to 90-percent-
decay lengths for which the anisotropy is neglected. In contrast, the solid curves include the effect of the
shell anisotropy and are shown for valuestef 0, 1.0, and 1.5. Moreover, the solid curvesfer 1.0

and 1.5 are based on the exact solution that uses equation (20b). The corresponding curves that are
based on the approximate formula for the anisotropy parameter that is given by equation (33) are identi-

cal. The solid curves indicate a negligible effect of varyingvhich verifies that# =4, and implies

that all three shell theories yield essentially the same results for #18fJfQunbalanced, unsymmetric
laminates. In addition, the results show that neglecting the shell-wall anisotropy, for the most part,
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underestimates the bending boundary-layer decay length by as much as approximately 16 and 6 percent
for shell walls made of P-100/3502 pitch-epoxy and IM7/5260 graphite-bismaleimide materials,
respectively, and with approximately 20-percerft @ies. In addition, the results in figure 22 show that
neglecting the shell-wall anisotropy underestimates the bending boundary-layer decay length by as
much as approximately 31 and 20 percent for shell walls made of P-100/3502 pitch-epoxy and
IM7/5260 graphite-bismaleimide materials, respectively, and with approximately 100-pertelieZ0

There is only a very small range shown in figure 22 where neglecting the shell-wall anisotropy overesti-
mates the bending boundary-layer decay length, and for this region, the effect is negligible.

Concluding Remarks

An analytical study of the attenuation of bending boundary layers in both balanced and unbalanced,
symmetrically and unsymmetrically laminated-composite, thin cylindrical shells has been presented for
nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations
and contains the Love-Kirchhoff shell equations and Donnell’'s equations as special cases. With this
analysis, two nondimensional parameters have been identified that characterize and quantify the effects
of laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very
general and encompassing manner. The anisotropy parameter includes the effects of anisotropy in the
form of coupling between pure bending and twisting that appears in many symmetric laminates to some
extent, coupling between extension and shear that is present in unbalanced laminates, and coupling
between membrane and bending action that is present in unsymmetric laminates.

A substantial number of structural design technology results for the bending boundary-layer decay
length have been presented for a wide range of laminated-composite shell structures that should be use-
ful additions to the structural designer’s collection of preliminary design tools. Moreover, the analysis
and results should provide additional physical insight into the fundamental behavior of general
laminated-composite shell structures and create a common basis for assessing bending boundary-layer
attenuation for the vast range of laminate constructions that are possible. Furthermore, the results
should be useful for the design of specimens for material characterization tests, for instrumenting struc-
tural verification tests, and for defining finite-element meshes. For all the laminate constructions con-
sidered in the present study, the results show that the differences between results that were obtained
with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell’'s equations
are negligible. The results also show that the effect of anisotropy in the form of coupling between pure
bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of
the balanced, symmetrically laminated cylinders considered. Moreover, the results show that the cou-
pling of the membrane and flexural anisotropy and the anisotropy caused by unsymmetric lamination is
generally unimportant with regard to the primary effect of the individual shell anisotropies on the bend-
ing boundary-layer decay length. The only exception encountered was for unbalanced, unsymmetrically
laminated cylinders for which coupling of the membrane anisotropy and the anisotropy caused by
unsymmetric lamination is a primary effect, as expected. The results also show that in some cases
neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and
in other cases results in an overestimation.
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Table 1. Lamina Properties

Lamina Material systems
property | Boron- | S-glass-| Kevlar M7/ AS4/ | AS4/ | Boron-| IM7/ | P-100/
@) Al epoxy | 49-epoxy| 5260 3502 | 3501-6 | epoxy | PETI-5| 3502

E;, Msi 33 7.5 11.02 22.1 18.5 20.01 29.5B 20.35 53.b
E,, Msi 21 1.7 0.8 1.457 1.64 1.30 2.68 1.16 0.73
V1o 0.23 0.25 0.34 0.258 0.3p 0.30 0.23 0.9 0}31
Gio, Msi 7.0 0.80 0.33 0.860 0.8y 1.08 0.81 0.p1 0|76
oy x 10°9°F 3.2 35 -2.22 0.0125 0.25| -0.167 3.38| -0.14 | -0.64
o, x 10°°F 11.0 11.0 43.89 14.91 16.2 15.6 16.83 16.?5 17.p

aSubscripts 1 and 2 denote the longitudinal (fiber) and transverse (matrix) directions of a specially orthotropic
lamina, respectively.

Table 2. Orthotropy Parameters for Single-Ply, Homogeneous,
Specially Orthotropic Laminates

[See eq. (36)]

Orthotropy parameteq)
E./E;
Vip = 0.2 Vip = 0.35

0.01 3.16 3.16
0.02 2.66 2.66
0.04 2.24 2.24
0.06 2.02 2.02
0.08 1.88 1.88
0.1 1.78 1.78
0.15 1.61 1.61
0.2 1.50 1.50
0.3 1.36 1.36
0.4 1.26 1.27
0.5 1.20 1.21
0.6 1.14 1.16
0.7 1.10 1.12
0.8 1.07 1.09
0.9 1.04 1.06
1.0 1.01 1.03

Table 3. Results for Specially Orthotropic Materials

Material E,/E, Ze(z), from Ze(z), from
systems @ V1o 0 reference 6 present study
(b) (b)
Boron-epoxy 0.100 0.30 1.782 2.796-2.805 2.806
Glass-epoxy 0.333 0.25 1.323 3.757-3.779 3.779
Graphite-epoxy 0.250 0.25 2.516 1.984-1.987 1.987

4Subscripts 1 and 2 denote the major and minor principal directions, respectively, of the specially orthotropic
materials defined in reference 6.

bQuantity2:(z) is defined by equation (37).
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Table 4. Orthotropy Parameters for@fg]s [(+®)omls and [(p),,]T Laminates

Fiber Orthotropy paramete@
angle, IM7/ Boron- | S-glass-| Kevlar | AS4/ AS4/ | Boron- | IM7/ P-100/

¢ 5260 Al epoxy |49-epoxy| 3502 3501-6 | epoxy | PETI-5 3502
0 1.98 1.13 1.45 1.93 1.84 1.98 1.82 2.05 2.98
5 1.97 1.13 1.45 1.92 1.83 1.97 1.82 2.04 2.90
10 1.94 1.13 1.44 1.91 1.81 1.94 1.81 2.02 2.84
15 1.90 1.12 1.42 1.88 1.77 1.88 1.79 1.9 2.78
20 1.84 1.12 1.39 1.84 1.72 1.80 1.76 1.9 2.58
25 1.76 1.11 1.35 1.78 1.66 1.71 1.72 1.8 2.40
30 1.65 1.10 1.30 1.70 1.57 1.59 1.67 1.7 2.19
35 1.53 1.09 1.24 1.60 1.46 1.46 1.59 1.6 1.97
40 1.39 1.07 1.16 1.46 1.34 1.32 1.48 1.4 1.74
45 1.23 1.05 1.08 1.30 1.20 1.17 1.33 1.2 1.50
50 1.07 1.02 1.00 1.13 1.05 1.03 1.15 1.1 1.26
55 0.92 0.99 0.92 0.96 0.92 0.89 0.97 0.9 1.04
60 0.78 0.97 0.85 0.81 0.80 0.77 0.81 0.7 0.83
65 0.68 0.95 0.79 0.69 0.70 0.68 0.7¢ 0.6 0.65
70 0.60 0.93 0.75 0.61 0.63 0.60 0.62 0.5 0.5
75 0.55 0.92 0.72 0.56 0.59 0.55 0.58 0.5 0.4p
80 0.52 0.91 0.71 0.53 0.56 0.52 0.56 0.5 0.3
85 0.51 0.90 0.70 0.52 0.55 0.51 0.55 0.4 0.36
90 0.51 0.90 0.69 0.52 0.55 0.51 0.55 0.4 0.3¢

Table 5. Orthotropy Parameters for{(845),]s Laminates
Number of Orthotropy paramete€
laminate | \j7/ | Boron- | S-glass-| Kevlar | AS4/ AS4/ | Boron- | M7/ P-100/

plies, 8m | 5260 Al epoxy |49-epoxyl 3502 | 3501-6 | epoxy | PETI-5| 3502
8 1.53 1.12 1.32 1.54 1.49 1.52 1.52 1.56 1.67
16 1.48 1.10 1.28 1.48 1.44 1.46 1.46 1.50 1.60
24 1.46 1.10 1.27 1.46 1.42 1.44 1.44 1.48 1.58
32 1.45 1.09 1.26 1.45 1.41 1.43 1.43 1.47 1.56
40 1.44 1.09 1.26 1.44 1.40 1.42 1.43 1.46 1.56
48 1.43 1.09 1.25 1.44 1.40 1.42 1.42 1.46 1.55
56 1.43 1.09 1.25 1.44 1.40 1.42 1.42 1.4% 1.55
64 1.43 1.09 1.25 1.43 1.40 1.41 1.42 1.4% 1.54
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Table 6. Orthotropy Parameters for4&0/90,,]s and [(+45,/0/90)]s Laminates

Number of Orthotropy paramete
laminate | \j7/ | Boron- | S-glass-| Kevlar | AS4/ | AS4/ | Boron- | IM7/ | P-100/
plies, 8m | 560 Al epoxy |49-epoxy 3502 | 3501-6 | epoxy | PETI-5 | 3502
8 1.00 1.01 1.01 1.00 1.00 1.00 1.0 1.00 1.00
16 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02
24 1.02 1.02 1.02 1.03 1.02 1.02 1.02 1.02 1.03
32 1.02 1.02 1.02 1.03 1.02 1.02 1.03 1.02 1.03
40 1.02 1.02 1.02 1.03 1.02 1.02 1.03 1.08 1.03
48 1.02 1.02 1.02 1.03 1.02 1.02 1.03 1.08 1.03
56 1.02 1.02 1.02 1.03 1.02 1.02 1.03 1.08 1.03
64 1.02 1.02 1.02 1.03 1.02 1.02 1.03 1.08 1.03
Table 7. Orthotropy Parameters fdd/§0£45),,ls and [0/90A45,),,]s Laminates
Number of Orthotropy paramete
laminate | \j7/ | Boron- | S-glass-| Kevlar | AS4/ | AS4/ | Boron- | IM7/ | P-100/
plies, 8m | 5260 Al epoxy |49-epoxyl 3502 | 3501-6 | epoxy | PETI-5 | 3502

8 1.13 1.05 1.09 1.14 1.13 1.13 1.14 1.14 1.15
16 1.08 1.04 1.06 1.08 1.07 1.07 1.09 1.08 1.09
24 1.06 1.03 1.04 1.06 1.06 1.06 1.04 1.06 1.07
32 1.05 1.03 1.04 1.06 1.05 1.05 1.09 1.05 1.06
40 1.04 1.03 1.03 1.05 1.04 1.04 1.09 1.0% 1.05
48 1.04 1.03 1.03 1.05 1.04 1.04 1.09 1.04 1.05
56 1.04 1.02 1.03 1.04 1.04 1.04 1.04 1.04 1.04
64 1.04 1.02 1.03 1.04 1.04 1.03 1.04 1.04 1.04
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Table 8. Anisotropy Parameters for @] Laminates

Fiber Anisotropy parametex
angle, | 7/ Boron- | S-glass-| Kevlar | AS4/ AS4/ | Boron- | IM7/ P-100/

¢ 5260 Al epoxy |49-epoxy| 3502 3501-6 | epoxy | PETI-5 3502

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0p
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0p
10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
15 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.00 1.0p
20 1.00 1.00 1.00 1.00 1.00 1.02 1.01 1.00 1.08
25 1.01 1.00 1.00 1.00 1.01 1.03 1.0Q 1.00 1.06
30 1.02 1.00 1.00 1.00 1.01 1.04 1.00 1.01 1.08
35 1.03 1.00 1.01 1.01 1.02 1.06 1.00 1.03 111
40 1.06 1.00 1.02 1.03 1.04 1.08 1.01 1.0% 1.14
45 1.09 1.00 1.04 1.06 1.07 1.11 1.05 1.09 1.18
50 1.13 1.01 1.06 1.12 1.11 1.14 1.11 1.13 1.28
55 1.18 1.01 1.08 1.18 1.16 1.17 1.19 1.19 1.28
60 1.22 1.02 1.09 1.25 1.20 1.20 1.27 1.2% 1.38
65 1.25 1.02 1.09 1.29 1.22 1.21 1.32 1.29 1.39
70 1.24 1.02 1.08 1.29 1.21 1.19 1.32 1.2 1.4p
75 1.20 1.01 1.06 1.24 1.16 1.15 1.27 1.2 1.39
80 1.12 1.01 1.03 1.15 1.10 1.09 1.17 11 1.28
85 1.04 1.00 1.01 1.05 1.03 1.03 1.05 1.0 1.1p
90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0 1.0p
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Table 9. Anisotropy Parameters foxgf+ Laminates

Fiber Anisotropy parametex
angle, | 7/ Boron- | S-glass-| Kevlar | AS4/ AS4/ | Boron- | IM7/ P-100/

¢ 5260 Al epoxy |49-epoxy| 3502 3501-6 | epoxy | PETI-5 3502

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0p
5 0.97 1.00 0.99 0.97 0.98 0.98 0.96 0.97 0.98
10 0.92 1.00 0.98 0.91 0.94 0.94 0.90 0.90 0.8p
15 0.88 0.99 0.96 0.86 0.90 0.90 0.86 0.86 0.8p
20 0.85 0.99 0.94 0.83 0.87 0.87 0.83 0.83 0.7[7
25 0.83 0.99 0.93 0.82 0.85 0.85 0.82 0.81 0.7p
30 0.82 0.99 0.92 0.81 0.84 0.84 0.82 0.81 0.7b
35 0.82 0.99 0.92 0.82 0.84 0.84 0.82 0.81 0.7p
40 0.83 0.99 0.93 0.82 0.85 0.84 0.83 0.81 0.7p
45 0.84 0.99 0.94 0.84 0.86 0.85 0.85 0.82 0.7p
50 0.86 1.00 0.95 0.86 0.88 0.86 0.87 0.84 0.7[7
55 0.88 1.00 0.96 0.89 0.90 0.88 0.90 0.87 0.7B
60 0.91 1.00 0.98 0.92 0.93 0.91 0.94 0.90 0.8p
65 0.94 1.00 0.99 0.95 0.96 0.93 0.97 0.93 0.84
70 0.97 1.00 0.99 0.97 0.98 0.96 0.99 0.97 0.8p
75 0.99 1.00 1.00 0.99 0.99 0.98 1.00 0.99 0.91
80 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.98
85 1.00 1.00 1.00 1.00 1.00 1.00 1.0Q 1.00 1.0D
90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0p
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Table 10. Orthotropy Parameters fog/fl) ]+ Laminates

Orthotropy parametes,
x100% [ \\m7/ | Boron- | S-glass-| Keviar | AS4/ | As4/ | Boron-| M7/ | P-100/
5260 | Al epoxy | 49-epoxy| 3502 | 3501-6| epoxy | PETI-5| 3502

0 051 | 090 | 0.69 0.52 055 051 055 049 034
5 067 | 092| 077 0.68 069 0671 060 066 063
10 076 | 094 | 082 0.76 07717 076 077 076 073
15 081 | 095| 086 0.81 082 081 08 08 079
20 085 | 097 | 089 0.86 086 083 086 08 084
25 089 | 098 | 092 0.89 089 084 080 08 088
30 092 | 098| 094 0.92 092 091 092 oo 091
35 094 | 099 | 096 0.94 094 094 094 09 093
40 096 | 1.00| 097 0.96 096 096 096 096 096
45 098 | 1.00| 0.99 0.98 098 09§ 098 098 098
50 1.00 | 1.01 1.00 1.00 1.000 1.0 100 100  1.00
55 102 | 101 1.02 1.02 102l 102 102 102  1.03
60 1.05 | 1.02 1.04 1.05 1.05 10§ 1.05 1.05  1.06
65 1.09 | 103 1.06 1.08 108 109 1.08 1.09 110
70 113 | 104 1.09 1.13 112l 113 112 118 115
75 119 | 105 1.12 1.18 117 119 117 118 1.22
80 126 | 1.06 1.17 1.25 124 128 124 127 131
85 135 | 107 1.22 1.35 133 136 138 137 143
90 148 | 1.09 1.28 1.47 144 149 144 150 161
95 167 | 111 1.36 1.65 160 167 159 170  1.93
100 198 | 113 1.45 1.93 184 198 18 205 293
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Table 11. Anisotropy Parameters fop/lDq]+ Laminates

Anisotropy parametex;

x100% [ \\m7/ | Boron- | S-glass-| Keviar 49-] As4/ | As4/ | Boron-| M7/ | P-100/
5260 | Al epoxy | epoxy | 3502 | 3501-6| epoxy | PETI-5 | 3502

0 100 | 1.00 | 1.00 1.00 100] 104 100  10p 1
5 091 | 1.00| 0098 0.91 093 091 094 090 0.1
10 084 | 099 | 0095 0.85 087 084 088 08 0.4
15 080 | 099 | 093 0.81 083 08] 084 078 0.5
20 077 | 098 | o001 0.78 081 077 08l 076 0.5
25 075 | 098 | 0.0 0.76 079 078 080 078 0.5
30 074 | 098 | 089 0.75 078 074 079 078 0.5
35 075 | 098 | 088 0.75 078 074 078 078 0.
40 075 | 097 | o088 0.76 078 078 079 074 0.
45 077 | 097 | o088 0.77 079 077 080 076 0.
50 079 | 097 | 089 0.79 081 079 08 078 0.1
55 082 | 097 | 090 0.82 083 082 084t 081 0.1
60 085 | 098 | 0091 0.85 086 083 086 084t 0.8
65 088 | 098 | 092 0.88 089 088 089 088 0.8
70 091 | 098 | 094 0.91 091 091 092 091 0.
75 094 | 098 | 0095 0.93 094 094 094 09 0
80 096 | 099 | 0097 0.96 096 096 096 09 0.
85 098 | 099 | 0098 0.97 098 098 098 098 0.
90 099 | 099 | 099 0.99 099 099 099 099 0.
95 100 | 1.00| 1.00 1.00 1000 109 1.0 100 1.0
100 100 | 1.00| 1.00 1.00 1.00] 1.0 1.o$ 100 1
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Table 12. Orthotropy Parameters for Ji03]+ Laminates

Orthotropy parametes,

x100% [ 1m7/ | Boron- | S-glass-| Keviar 49-] Asa4/ | Asa/ | Boron-| M7/ | P-100/
5260 | Al epoxy | epoxy | 3502 | 3501-6| epoxy | PETI-5 | 3502

0 198 | 113 | 145 1.03 184 108 18p 206 24
5 171 | 111| 137 1.69 163 171 168 175 24
10 154 | 109 | 130 152 1490 154 149 156 17
15 141 | 108 | 124 1.41 138 141 138 143 14
20 132 | 107| 120 131 130 132 130 133 14
25 125 | 105| 116 1.24 123 128 128 125 1.4
30 119 | 105 | 113 1.19 1180 119 118 120 1.4
35 115 | 1.04| 110 1.15 114 118 114 115 11
40 111 | 103| 108 111 111 111 111 11 13
45 100 | 103| 106 1.09 108 109  1.08 100 11
50 106 | 1.03| 105 1.06 1.06f 108 106 106  1d
55 104 | 102| 103 1.04 104 104 104 104 1
60 102 | 102| 102 1.02 102l 102 1.0 102  1d
65 100 | 101| 100 1.00 1000 100  1.00  1.00 1
70 098 | 101| 099 0.98 098 098 098 098 0.
75 095 | 1.00| 0097 0.95 095 093 096 095 0.
80 092 | 099 | 094 0.92 092 092 092 092 0.9
85 088 | 098] o001 0.88 088 088 089 088 0.8
90 082 | 097| o088 0.83 083 082 083 082 0.8
95 074 | 095| 083 0.75 076 074 076 074 0.1
100 060 | 093| 075 0.61 063 060 062 059 0.5
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Table 13. Anisotropy Parameters for m]T Laminates

Anisotropy parametex;

IM7/ Boron- | S-glass-| Kevlar 49-| AS4/ AS4/ | Boron- | M7/ P-100/
5260 Al epoxy epoxy 3502 | 3501-6| epoxy | PETI-5| 3502

0 1.00 1.00 1.00 1.00 1.00 1.00 1.0¢ 1.00 1.00
5 1.02 1.01 1.01 1.02 1.02 1.02 1.02 1.08 1.07
10 1.04 1.01 1.02 1.05 1.04 1.04 1.0% 1.06 1.13
15 1.06 1.02 1.02 1.07 1.05 1.05 1.07 1.08 1.17
20 1.07 1.02 1.03 1.09 1.06 1.05 1.09 1.0p 1.19
25 1.07 1.02 1.03 1.10 1.06 1.05 1.10 1.1p 1.20
30 1.07 1.03 1.03 1.10 1.06 1.04 111 1.09 1.20
35 1.06 1.03 1.03 1.10 1.05 1.03 1.11 1.09 1.18
40 1.05 1.03 1.03 1.09 1.04 1.01 1.12 1.08 1.16
45 1.03 1.04 1.03 1.09 1.04 1.00 1.12 1.06 1.12
50 1.02 1.04 1.03 1.08 1.03 0.98 1.12 1.0p 1.08
55 1.01 1.04 1.03 1.08 1.02 0.97 1.13 1.04 1.05
60 1.01 1.04 1.03 1.08 1.02 0.96 1.14 1.04 1.01
65 1.01 1.04 1.04 1.09 1.03 0.96 1.15% 1.04 0.98
70 1.02 1.04 1.05 1.11 1.04 0.97 1.1 1.06 0.96
75 1.04 1.04 1.06 1.13 1.06 0.98 1.2 1.0¢ 0.96
80 1.07 1.04 1.07 1.16 1.09 1.00 1.2 1.1p 0.97
85 1.11 1.04 1.08 1.20 1.12 1.04 1.2 1.1p 1.01
90 1.16 1.03 1.09 1.25 1.16 1.09 1.3 1.20 1.08
95 1.22 1.03 1.10 1.31 1.20 1.15 1.3 1.2y 1.21
100 1.24 1.02 1.08 1.29 1.21 1.19 1.3 1.29 1.42
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Anisotropy parameter, #=1.6
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Figure 1. Nondimensional 90-percent-decay length for symmetrically and unsymmetrically laminated cylinders,
as a function of laminate orthotropy.
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Figure 2. Nondimensional 90-percent-decay length for symmetrically and unsymmetrically laminated cylinders,
as a function of laminate anisotropy.
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Appendix A

Sanders-Koiter Equations

The linear Sanders-Koiter shell equations (refs. 16 and 17) are presented in this appendix for a
right-circular cylinder with a radius that is given by R. For these equations, 8 dedote the axial
and circumferential coordinates, respectively. First, the equilibrium equations are presented; then the
kinematic equations and the constitutive equations are presented. Last, the boundary conditions are
given for a complete right-circular cylinder at an edge that is given by a constant value of the axial
coordinate X.

Equilibrium Equations
The equilibrium equations are given in a form similar to those found in reference 22; that is,

ONy 1 0Nyg Cp OMyg
+ = -
ox R 06 -oRr2 06

t0x = (A1)

oN ONg ¢C c, OM
x9+1 6+ 1 2 x0

- N - + :0
ox R0 TRPTR ax 0 (A2)
0Qy 10Qy Ng
[ T B =
ox R R (A3)
aMX 1 aMXG
— T+ = -Q,=0
ox R 00 Qu (A4)
aMXe 1 aMe
+————0Qp=0
ox 'R oo (A3)
where N, ,Ng , andN,g are the membrane stress result@gts;  Qgnd are the transverse shear-
stress resultantl, Mg , andlg are the bending stress resutiantgy ., g, and are the applied
surface tractions; and;  ang are constants that identify the equations of other shell theories that
are considered herein. In particular, the Sanders-Koiter equations are given=by=1 , and the

Love-Kirchhoff equations are givenlsy =1  aogl=0 . Donnell’'s equations are giveyx, =0
This convention is used throughout the present study.

Kinematic Equations

The kinematic equations are given by

Ex =30 (A6)



o_L OV W
%8 R0 R

ov_1lou

X" 5x R 00
ow
52:—5;

|30 €1 _ldﬁw

"R R0

BO 02 ‘l\’_l@

n"2lox RO

o 0BY  o%w

e 10B3_¢1 gy 1 0w

0 (GBX Bn) Be 2 w 1( WL )av

0~ Rl 20 ax  Roxoo R\
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2 “2)ox

2 au
oR2 06

(A7)

(A8)

(A9)

(A10)

(A11)

(A12)

(A13)

(A14)

where u, v and w are the axial, circumferential, and radial displacements of a point of the shell middle
surface;e? g , and% are the membrane straﬁﬁs Bs . B3nd
Kf(’e are the bending strains. The displacement w is positive when it is outward from the cylinder

reference surface.

Constitutive Equations

are the rotatloﬁa aﬂ@d ,

The isothermal constitutive equations are given in matrix form by

Ny A Ap A Buy B Big
Ng A1z Az Az Bz Bp Bog
Nxo | _|A16 Az Aes Bie Bos Bes
My Bix Bz Big Duu Do Dig
Mg Bio By Bos Dip Dy Dog
Mo Bis B2 Bes Dig D2s Deg
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where the subscripted A, B, and D terms of the matrix are the stiffnesses of laminated-composite
shells that are obtained from the Love-Kirchhoff shell theory. Moreover, the constitutive terms in equa-
tion (A15) are identical to those for laminated-composite plates that are given in reference 18, page 198.

Boundary Conditions

The boundary conditions for an edge that is defined by a constant value of the axial coordinate x
are given by

N,=N,©® or u=u@) (A16)
1 1 = .
NX9+R(C1+2 cz)Mxe—T(e) or v=v(©) (A17)
0+ MO Ve o w= ) A18
My=M,®) or By=PO) (A19)
whereu(®) V() , andv®) are applied edge displacemd@(}; is an applied edge rotatlﬁ;g(ﬁ)and ,

T©), V@), andM,(6) are applied edge loads.
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Appendix B

Equations for Axisymmetry

The linear Sanders-Koiter shell equations that are presented in appendix A for a right-circular cylin-
der with a radius R are specialized in this appendix for the case of axisymmetric behavior. For these
equations, x an® denote the axial and circumferential coordinates, respectively. The specialization to
axial symmetry is conducted by eliminating all terms in the equations of appendix A that are differenti-
ated with respect to the circumferential coordin@te-irst, the equilibrium equations, the kinematic
equations, and the constitutive equations are presented. Then, the boundary conditions are given for a
complete right-circular cylinder at an edge that is given by a constant value of the axial coordinate x.
Last, the axisymmetric equations are manipulated into a single ordinary differential equation in terms of
the radial displacement w(x).

Equilibrium Equations
The equilibrium equations for axisymmetric behavior are given by

dN

e 1= ®Y

dN C c, dM
x9+ 1 + 2 x0

dx Reﬁdx

+(gx)=0 (B2)

dQx Npg
-+ =0
ax R IW (B3)
dM, 0
a7 (B4)
dM,q
— =0
o e (B5)
where the membrane stress resultadiys Ng, ,Nypd ; the transverse shear-stress @gultants and

Qp; the bending stress resultatis, Mgy, &g ; and the applied surface tragtiops , q,,, and
are functions of only the axial coordinate x.

Kinematic Equations

The kinematic equations are given by

Ex =10 (B6)



w
sgzﬁ (B7)
_av
Yo = g (88)
dw
O__i
c
0 1
=_"v
Be=17 (B10)
C2 dv
o_"20Vv
Bn= 5 dx (B11)
o BY  dAw
Kx=— == 5 (B12)
dx dx 2
K3=0 (B13)
(0]
o 1 o B 1 1 \dv
Kop=— + = |Cq1+—ChHh|—
0= R Pt o TR 2 %2 o (B14)
where the middle-surface displacements u, v, and w; the membrane sffaie§ , V3 and ; the
rotations By ,Bg , andBy ; and the bending strakys kg, , &Rd are functions of only the axial
coordinate Xx.
Constitutive Equations
The isothermal constitutive equations reduce to
; g9
Ny A1 A1z Ae By Bio Bie .
Ng Az Az Az Bip By Bog || 6
Neo | _|As6 Az Aos Bis Bas Bes |/ Vo (515)
My Byy Biz Big D1y Dip Dig || &3
Mg Bio B By Do D Do ||
Mo Bis B2s Bes Dis D2s Des o
Kxe
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where the subscripted A, B, and D terms of the matrix are the usual constitutive terms of classical
Love-Kirchhoff-type laminated composite shell theory or classical laminated plate theory (e.g., see
p. 198 of ref. 18).

Boundary Conditions

The boundary conditions for an edge that is defined by a constant value of the axial coordinate x
are given by

Ny, =N, or u=u (B16)
1 1 ~ -
Nx(-)"'R(Cl"'Z C2|Myg=T or v=v (B17)
Q=V or w=w (B18)
My=My or B3=B (B19)
where the applied edge displacememtsy , ,w&nd ;the applied edge rﬁtation ; and the applied edge

loadsN, ,T V ,andM, are all constants.

Bending Boundary-Layer Equation

The bending boundary-layer equation is obtained by first noting that integration of equation (B1)
yields

N, = —f 0y dx +C =N(x) (B20)

where C is a constant of integration that is determined from the boundary condition given by equa-
tion (B16). Next, equations (B2) and (B5) are combined to get

dNyg 1 1 \dMyg
+—|ci+-cC +0g(x)=0

dx R( 145 %2 g+l (B21)

For convenience, the parameter
1
H=Cp+5Co (B22)

is introduced such that the Sanders-Koiter equations are givar;%y and the Love-Kirchhoff equa-
tions are given byu=1 . Donnell's equations are givenus0 . Similarly, the function
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'T'(X) =Nyg +% Myg (B23)

is introduced so that equation (B21) becomes

dT ~
o Fde®)=0 (B24)

and the corresponding boundary condition given by equation (B17) becomes

T=T orv=v (B25)
Integration of equation (B24) yields
T=_ [ g dx +C =T(X) (B26)

where C is a constant of integration that is determined from the boundary condition given by equa-
tion (B25). Next, equations (B3) and (B4) are combined to give

d’M, Ng
> — g Tan®=0 (B27)

The next step in the analysis is the simplification of the constitutive equations. First, by using equa-
tions (B8) and (B22), equation (B14) is expressed as

Ko =1 Yxo (B28)

Tl=

By using equations (B23) and (B28), the constitutive equations are expressed as

Ny A1n A A B
Ng Ap Axpm Ay By

|
R
m ™m
DO X O

(B29)

T A Az Ags Bis || Vo
My Bix Bz Big Dip [|kQ
and
Mg =B 1285 + B 2£d + B ogysg + D1oKy (B30)
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where

A16=A16+u(2)8hls (B31)
A26=A26+u(2)8h% (B32)
A66:A66+2U(2)Bh66+ uz(g)z [:;6 (B33)
516:516+p(g)[)hm (B34)
3262526+H(|2)ths (B35)

The motivation for writing the constitutive equations in this form is that the matrix equation given by
equation (B29) is the only part of the full constitutive equations that appears in the strain-energy density
function, which is used in the present paper to determine the corresponding positive-definiteness condi-
tions. With these simplified constitutive equations and equations (B6)—(B8) and (B12), equation (B20)
is expressed as

adv daw

du W — N
An g tA12 5 TA16 _Bllidxz —NXx)=0 (B36)
and equation (B26) is expressed as
— du - w. -~ dv = dw =
A +Ays— +Ags —Big—— —T(X)=0
16 g A2 R TAe6 g TB16 2 *) (B37)

d
Equations (B36) and (B37) are then solvedg)%r g\éd to get

U Uy — W (= ~ — \diw
AgeNX) —A16T(X) + (A 16A 26~ A12A66)§ + (AseB 11~ A16B 16)72
du_ * (B38)
o ArPes—Als
- = = — W = - d?w
A1 TK) —AggNK) + (A 12A 16—A11A26)§ + (A 11B16—A16B 11)72
@& dx (B39)

X ~ ~2
d A11Aee—Als
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Equation (B39) indicates that the circumferential displacement v(x) becomes uncoupled from the axial

displacement u(x) and the radial displacement w(x) whAgg=A,5=B1=0 , which implies that
A16=A2=B15=D15=0. In addition, the constitutive equation (B29) indicates tNat Ng, , and
M, become uncoupled from the torsional, shear Styin wheyF Ay =B15=0 and that
which is defined by equation (B23), becomes uncoupled ft&msg , JK%nd . Furthermore, equa-
tion (B30) indicates thatMg  becomes uncoupled from whgps =0 , Which implies
B2g=D26=0.

Next, equations (B38) and (B39) are then substituted into equations (B6) and (B8), and the resulting
expressions foeg anvﬁe , along with equations (B7) and (B12), are substituted into the constitutive
equation (B29). This action converts the strains and stress results in equation (B29) into functions of the
radial displacement w(x). Substituting the expressiond\{pr Napd into equation (B27) yields the
bending boundary-layer equation that is given by

d*w d4w
Cli +C27 +C3W:C4(X) (B40)
ax? dx?

The constant coefficients are given by

o, L, _
AgeB11+A11B16—2A16B11B 16

C,=Dyyl1- R (B41)
(A11A66_A16)D11
> (AlG;‘ZG_AHB‘BG)Bll"'(A12A16_A11'5‘26 Bis
Co=—g|Br2* e (B42)
A11Aes—Als
2 \x =2 —2 - =
(A11A22_A12)A66_A11A26_A22A16+2A12A16A26
Cy= . (B43)
oS - -
R (A11A66_A16)
The functionC4(X) is given by
('5‘16(5‘26 - A12'5‘66)N(X) + (A 12716 _All'E‘ZG)T(X)
C4X) =0nK) + -
R(AllAGG_Alﬁ)
_ _ dZN _ _ d2:|-
(BllAGG_AlﬁB 16)dX2 + (AllB 16— BllA16)dX2
+ (B44)

— =2
A11Aes—Als
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These expressions are simplifed further by introducing the following expressions:

A16A26—A1Ag6

ap= = —, —, — (B45)
(A11A22 —Alz)Aee—AllAze—AzzAls +2A 1A 16A 26
- =2
_ A1iAes—Ale
agp = - — — - (B46)
(A11A22 _A12)A66_A11A26_A22A16 +2A 1A 16A 26
AoA e —AqqA
= - 1A 167 : 11 267 : _ (B47)
(A11A22 _A12)A66_A11A26_A22A16 +2A 15A16A 26
by =— (alzB 11+ 3B 15+ 8B 16) (B48)
_ . _
AgeBi1+A11BTs—2A16B1:1B1g
e=1- - (B49)
(A11A66_A16)D11
By using equations (B45)—(B49), equations (B41)-(B43) are expressed as
C,=Dype (B50)
2 by
Co=g = (B51)
R azz
1
Ca= (B52)
R a22
Similarly, for the case where the second derivativel(of Taéxd are zero valued, equation (B44)
becomes
ay,N(X) +aygT(X)
Ca(X)=0qp(X) + (B53)

Rézz

The desired form of the bending boundary-layer equation is obtained by dividing equation (E40) by ;
that is,
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d4 d’w
S +4sT T+ 4Qw =Ry (B54)
dx dx

where the constants S and Q are given by

C b
o= 2 i 21 (B55)
4C1  2Ray,Dye

Cs 1
= = (B56)
4C1  4R%a,,Dyqe
The function P(x) is given by
C4) _an) Ay NK) +a56T(X)
P = SR S (B57)
C 1 D 1 15 RazzD 116
for the special case when the second derivativespof Taod are zero valued. The Qygntity

that appears in equations (B54)—(B56) is sometimes referred to, in some contexts, as a reduced bending
stiffness (ref. 12).
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Appendix C

Anisotropy-Factor Equations

The first-order approximation of the anisotropy factor  that is used herein is given by

_ h
A=A, 1+“@1§ (C1)
whereA# is the value of equation (20b), witk 0 in the terms with the overbars. This expression is
given by
112
2 1/4
[ AAR—-AD by
A= AL 2% 1-— (C2)
n \/ 82D11¢9
which is the anisotropy factor that corresponds to Donnell’s equations. Theagrnis,; I~ and are
given by
A16h26—A12Me6
ajp= ) ) ) (C3)
(A11A22_Alz)AGG_AllAZG_A22A16+2A12A16A26
_ A1Aes—Als
axp = N ) N (C4)
(A11A22_A12)A66_A11A26_A22A16+2A12A16A26
A1A16—A11A%
ax= ) ) ) (C5)
(A11A22_Alz)AGG_AllAZG_A22A16+2A12A16A26
by =— (alzB 11+tagpBip+ayB 16) (C6)
AgeB3 +A ;B3 —2A BB
66B11 T A11B16—2A16811B 16
en=1- (C7)

(A11A66_A%6)D11
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The term ¢, is a first-order correction to the results that correspond to Donnell’s equations and is
given by

\/ a2D11€0 (32261 + alzzeo) + 2322( b121€0— bzlel) —2a157P21€
4ay2 (\ / aD11€g — b21)

e~ (C8)

where

2 2
2 A16B11—A11B 16) Dl6(A 11Ae6—A 16) _BlG(B 117661t A11B 66) + AlG(AllB 66t B 16)
61 = 2 (Cg)
2
(A11A66_A16) Dyih

B16f16+ B2sf26 * Besfes
Ay, = > (C10)

2 2 2
(A11A22_A12)A66_A11A26_A22A16+2A12A16A26 h

_ B 16916 * B 26926 * BesJes
A= —2 . (C11)
2 2 2
(A11A22_A12)A66_A11A26_A22A16+2A12A16A26 h
_ B 16N16*B2ghos* Beghes
Q126 = 2 (C12)
2 2 2
(A11A22_A12)A66_A11A26_A22A16+2A12A16A26 h
_ asD16
D1p1= —| a112B11 tagoB 1o +a1eB 16+ h (C13)
and
_ 2 2 2
f16=Ao A16A22_A11A26) +A65‘A26(A11A22+A12 —2A12A22A14 (C14)
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_ 2 2 2
foe = A16(A26A11 _A22A16) + A65‘A16(A11A22 +AD| - 2A11A12A24 (C15)
foe = 2(A12A16_A11A26)(A16A22_A12A26) (C16)
916~ (A12A16_AllAZG)(AlﬁAZG_AleGG) (C17)

_ 2
026 = (A12A16_A11A26)(A11A66_A16) (C18)

2

O66 = (A12A16_A11A26) (C19)

_ 2
hie _A12A66(A12A66_A12) +A11A26(A12A26_A16A22) +A16A22(A12A16_A11A26) (C20)
_ 2 2 2
hog __AllAGG(AllAZZ_AIZ) +A16(A11A22_2A12) +A11A26(2A12A16_A11A26) (C21)

_ 2
hes = 2(A11A26_A12A16)(A11A22_AlZ) (C22)

Special Cases fosyand €,
Simplifications to 4, and¢,; are presented below for unbalanced and balanced, symmetric lami-

nates and for balanced, unsymmetric laminates that include the subclasses of general antisymmetric
laminates, antisymmetric cross-ply laminates, and antisymmetric angle-ply laminates.

Unbalanced and balanced symmetric laminates

For unbalanced, symmetric laminate®;a#0 Ays#0 , @ =B1p=Byy=B1g=Byg=
Bgg=0. For this special case,

= { (A11A22_A%2)(A11A66—A%6) \JJ4
4=

2 > 2 (C23)
\A11[(A11A22_AIZ)AGG_AllAZG_AZZAIG+2A12A16A26]/
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which agrees with the corresponding equations given by Reuter (ref. 4), and

D16 A12A16—A11A26)
é,= o (C24)

)
2 2 2 2
2h (A11A22_A12)A66_A11A26_A22A16+2A12A16A26 Dll(AllAGG_A16)

For balanced, symmetric laminatés;g=A55=0 in addition to the subscripted B-matrix constitutive
terms. For this special casg,=1 agf=0

Balanced, unsymmetric laminates

For balanced, unsymmetric laminate8;6=A2=0 , which yields the following simplified
expressions:

2 2
B B
¢g=1- 11 B (C25)
A11D11 AesP11
A B-—A-B
A 11B12—A12B11 (©26)

- 2
\/ A11D11A AR —AT) e,
_ 4 =12
#9=y/eol1+A) (C27)

816(D16 B11Big B1eBes

€, = = - - (C28)
! A66h\D11 A11D11 AgeD11
1 |e Leon ZBle(Alles—AlzBls)
= - | =@1+2N)+
2 40+N) eo( ) ; (C29)
Ageh A11D11(A11A22—A12)eo
For the subclass of balanced, antisymmetric laminaleg,=Dog=0 , in addition to the shear-
extensional coupling terms, which yields the following simplification:
2B%; [By Beg
“L™ AgD1ih| Ary " Ag e
66”110 A11 Aep
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that is applied to equation (C29). For the subclass of (balanced) antisymmetric cross-ply laminates,
B12=B1g=Bog=Bg=0, Bop=—B11, andD15=Dy5=0 in addition to the shear-extensional cou-
pling terms. For this special cage, =0 and

A1B11
Ag=y/ € (C31)

1_
0 2
\/ A11D11A11A AT €

where
2
B
o=1—\ = (C32)
A11D11
For the subclass of balanced, antisymmetric angle-ply laminBtgs; B, =By, =Bgg=0 and

D16=D2=0 in addition to the shear-extensional coupling terms. For this special;ea%
where

B2
o=l (C33)
AgsD11
which agrees with the corresponding equations given by Reuter (ref. 4), and
B 16(A 11B26—A1B 16)
é,= (C34)

2
2A66h\/ A11'311('°~11A22—Alz)eo

Further simplifications can be made to equations (C31) and (C32) for [0/90/.../90] antisymmetric-
cross-ply-laminate shell walls with an even number of layers that have identical material properties. For
these laminates, the plies are specially orthotropic, and their principal material directions are oriented at
0° and 90 to the cylinder axes in an alternating manner. In particular, the major principal axes of the
odd-numbered and even-numbered plies are aligned with the x8-axid, respectively, with the first
ply in the stacking sequence located at the inner surface of the cylinder. Moreover, all odd-numbered
plies have the same thickness, and all even-numbered plies have the same thickness, but these
two thicknesses are, in general, different. The laminate stiffnesses are given in reference 18 (see
pp. 224-226) in terms of the number of layers N, the thickness ratio M, the ratio of the principal elastic

=
E;
ratio is defined by

moduli F= (for which 0 < F< 1), and the reduced, plane-stress lamina stiffnesses. The thickness

N-1 N i
1

M= 2t 2t (C35)
k=13,... k=2/4,... @
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wherety, denotes the thickness of the kth ply and

N-1 N
N
h= Z t(k) + Z t(k) = E(t(l) + t(z)) (C36)
k=13,... k=24,...

is the total laminate thickness. For the antisymmetric cross-ply lamingjesid f,) are the thicknesses

of the @ and 90 layers, respectively. Substituting the nonzero laminate stiffness expressions for this
class of antisymmetric cross-ply laminates that are given in reference 18 into equations (21), (C31),
and (C32) yields

1/4
_| n-a-pam+nm+H 2 <
\aw+F)(1+MF)—[(1+M)Fv12]j
-1/2
, 12 MF1-P
A=y | 1+ ol : (c38)
Ny / [L-@- PRI + DM + FY (M + FIL+MP) - (M + DRV 1%
2 2
ep=1-— 1§M -h (C39)
N“M+1)"M+B[1-1-Pq|
where
1, 8MM-1) a0)

andv,, is the major Poisson’s ratio. For the special, but practical, case of regular antisymmetric cross-
ply lamination, all plies have the same thickness and equations (C37)—(C39) reduce to

~1/4

0=|1-| 22 2 ca1
1+F (C41)

=12

12 v, Fl- \

,40=4/60f1+ /12914 (C42)
\ N(1+F)\/ [(1+P?—@Rv1p)7e, f

2
eozl_i 1-F (C43)
N2\ 1+F
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Appendix D

Example

Numerical calculations of the nondimensional orthotropy and anisotropy parameters and the bend-
ing boundary-layer decay length are presented in this appendix for a,j{@34KP/90),]+ unbalanced,
unsymmetrically laminated cylinder with a radius R = 4 in. For this laminate, tifeptiéS and the O
and 90 plies are made of the Kevlar 49-epoxy material given in table 1. The other plies are made of the
AS4/3502 graphite-epoxy material given in table 1. All ply thicknesses are 0.005 in., and the total wall
thickness is given by h = 0.06 in.

The laminate stiffnesses were calculated from the formulas given on page 198 of reference 18 and
are given in matrix form by

An A1p Als 41678 13051  1.0787
Ay A |= 24682 03932 |x10°Ibin.
Symmetric Ass Symmetric 1.4022
Bu1 B2 Bie 0.7475 -1.0051 -0.1288
By, By |= 12628 -0.1288 |x10°Ib
Symmetric Bes Symmetric -1.0051
D11 Dip D16 78844 28842 08749
D, Dy |= 93791 06464 |x10%indb
Symmetric D66 %/mmetric 3.0057

The numerical value of the nondimensional orthotropy parangeisrobtained by substituting the
appropriate laminates stiffnesses into equation (20a), which giwe$.0628. To calculate the nondi-
mensional anisotropy parameses, the inverse of the matrix with the subscripted A-terms is needed.
This inverse matrix is given by

ik ap A6 34344 14604 —2.2325
a, ay |= 48619 -0.2400 |x10~°inlb
Symmetric 55 Symmetric 8.9163

The expressions for;g &,, and gg are given by equations (C3)—(C5), respectively. Substituting the
numerical values for B, Byo, B1g, 82, &5, and 3¢ into equation (C6) gives,p= 0.0059 in. Similarly,
substituting the laminate stiffnesses into equation (C7) giyed.9713. Next, the values for the lami-
nate stiffnesses;a eg, and B, are substituted into equation (C2) to ggt= 1.1940.
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The numerical value for the first-order correction fag#ris obtained by first substituting the
appropriate laminate stiffnesses into equation (C9) t@,get0.0075. Next, the appropriate laminate
stiffnesses are substituted into equations (C14)—(C22); then, the resulting values are substituted
into equations (C10)—(C12) to get;;a= 6.2541x 10719 in/lb, a5, = -1.5760x 107 in/lb, and
a106=—5.2861x 1072 in/lb. Substituting these and the other required values into equation (C13) gives
b5 = 3.2255x 107 in. Similarly, equation (C8) giveg, = 0.0022.

The first-order approximation of the anisotropy factois obtained b%/ substituting the numerical
values fory, R0 and¢; into equation (C1). For the present examE{e? 0015 | Substituting the
numerical values for the last three of these quantitieguand.5, which corresponds to the use of the
Sanders-Koiter equations, into equation (C1l) gides 4, = 1.1940. To compute the exact value
of anisotropy factor# that is given by equation (20b), the laminate stiffnespesand R are
substituted in equations (B31)-(B34) to obtéigy = 1.0¢82° Ib/in., A,z = 0.3927 10° Ib/in.,

Ags =1.3947x 1C° Ib/in.,, andB;g =-1.2555x 17 Ib. Next, the value foe is computed by
substituting these results and the appropriate laminate stiffness values into equation (B49); this action
givese = 0.9714. Then, the quantities defined by equations (B45)—(B48) are calculatedatg get =
-1.4604x 1078 in/lb, ay, = 4.8619 107 in/lb, 3y =-0.2401x 10° in/lb, andb,; = 0.0059 in.
Finally, substituting the appropriate numerical values into equation (20b) gives the exact value of
anisotropy facto¥ = 4, = 1.1940, which is identical with the first-order approximation4or

The nondimensional bending boundary-layer decay length, with anisotropy neglected, is obtained
by specifying a value for the tolerance parametand then substituting that value and the numerical
value for the nondimensional orthotropy parameténto equation (19). Foe = 0.1, this step gives

d° . d° o . .
ﬁ =1.8595, This value corresponds {ﬁ =0.2277,  which indicates that the bending action attenu-

ates at a distance of approximately 23 percent of the cylinder radius. The nondimensional bending

boundary-layer decay length, with anisotropy included, is obtained by substituting the numerical values
[0}

d d d
for ﬁ and into equation (18). This step givefRﬁh =22202 | which correspondﬁ £0.2719 ,

which indicates that the bending action attenuates at a distance of approximately 27 percent of the cylin-
der radius. Overall, these results indicate a very small effect of the laminate anisotropy.
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